3.2686 \(\int \frac{\sqrt{1-2 x}}{\sqrt{2+3 x} (3+5 x)^{3/2}} \, dx\)

Optimal. Leaf size=61 \[ 2 \sqrt{\frac{7}{5}} E\left (\sin ^{-1}\left (\sqrt{\frac{5}{11}} \sqrt{1-2 x}\right )|\frac{33}{35}\right )-\frac{2 \sqrt{1-2 x} \sqrt{3 x+2}}{\sqrt{5 x+3}} \]

[Out]

(-2*Sqrt[1 - 2*x]*Sqrt[2 + 3*x])/Sqrt[3 + 5*x] + 2*Sqrt[7/5]*EllipticE[ArcSin[Sqrt[5/11]*Sqrt[1 - 2*x]], 33/35
]

________________________________________________________________________________________

Rubi [A]  time = 0.0140328, antiderivative size = 61, normalized size of antiderivative = 1., number of steps used = 3, number of rules used = 3, integrand size = 28, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.107, Rules used = {99, 21, 113} \[ 2 \sqrt{\frac{7}{5}} E\left (\sin ^{-1}\left (\sqrt{\frac{5}{11}} \sqrt{1-2 x}\right )|\frac{33}{35}\right )-\frac{2 \sqrt{1-2 x} \sqrt{3 x+2}}{\sqrt{5 x+3}} \]

Antiderivative was successfully verified.

[In]

Int[Sqrt[1 - 2*x]/(Sqrt[2 + 3*x]*(3 + 5*x)^(3/2)),x]

[Out]

(-2*Sqrt[1 - 2*x]*Sqrt[2 + 3*x])/Sqrt[3 + 5*x] + 2*Sqrt[7/5]*EllipticE[ArcSin[Sqrt[5/11]*Sqrt[1 - 2*x]], 33/35
]

Rule 99

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Simp[((a + b
*x)^(m + 1)*(c + d*x)^n*(e + f*x)^(p + 1))/((m + 1)*(b*e - a*f)), x] - Dist[1/((m + 1)*(b*e - a*f)), Int[(a +
b*x)^(m + 1)*(c + d*x)^(n - 1)*(e + f*x)^p*Simp[d*e*n + c*f*(m + p + 2) + d*f*(m + n + p + 2)*x, x], x], x] /;
 FreeQ[{a, b, c, d, e, f, p}, x] && LtQ[m, -1] && GtQ[n, 0] && (IntegersQ[2*m, 2*n, 2*p] || IntegersQ[m, n + p
] || IntegersQ[p, m + n])

Rule 21

Int[(u_.)*((a_) + (b_.)*(v_))^(m_.)*((c_) + (d_.)*(v_))^(n_.), x_Symbol] :> Dist[(b/d)^m, Int[u*(c + d*v)^(m +
 n), x], x] /; FreeQ[{a, b, c, d, n}, x] && EqQ[b*c - a*d, 0] && IntegerQ[m] && ( !IntegerQ[n] || SimplerQ[c +
 d*x, a + b*x])

Rule 113

Int[Sqrt[(e_.) + (f_.)*(x_)]/(Sqrt[(a_) + (b_.)*(x_)]*Sqrt[(c_) + (d_.)*(x_)]), x_Symbol] :> Simp[(2*Rt[-((b*e
 - a*f)/d), 2]*EllipticE[ArcSin[Sqrt[a + b*x]/Rt[-((b*c - a*d)/d), 2]], (f*(b*c - a*d))/(d*(b*e - a*f))])/b, x
] /; FreeQ[{a, b, c, d, e, f}, x] && GtQ[b/(b*c - a*d), 0] && GtQ[b/(b*e - a*f), 0] &&  !LtQ[-((b*c - a*d)/d),
 0] &&  !(SimplerQ[c + d*x, a + b*x] && GtQ[-(d/(b*c - a*d)), 0] && GtQ[d/(d*e - c*f), 0] &&  !LtQ[(b*c - a*d)
/b, 0])

Rubi steps

\begin{align*} \int \frac{\sqrt{1-2 x}}{\sqrt{2+3 x} (3+5 x)^{3/2}} \, dx &=-\frac{2 \sqrt{1-2 x} \sqrt{2+3 x}}{\sqrt{3+5 x}}+2 \int \frac{-2-3 x}{\sqrt{1-2 x} \sqrt{2+3 x} \sqrt{3+5 x}} \, dx\\ &=-\frac{2 \sqrt{1-2 x} \sqrt{2+3 x}}{\sqrt{3+5 x}}-2 \int \frac{\sqrt{2+3 x}}{\sqrt{1-2 x} \sqrt{3+5 x}} \, dx\\ &=-\frac{2 \sqrt{1-2 x} \sqrt{2+3 x}}{\sqrt{3+5 x}}+2 \sqrt{\frac{7}{5}} E\left (\sin ^{-1}\left (\sqrt{\frac{5}{11}} \sqrt{1-2 x}\right )|\frac{33}{35}\right )\\ \end{align*}

Mathematica [A]  time = 0.0794511, size = 61, normalized size = 1. \[ -\frac{2 \sqrt{1-2 x} \sqrt{3 x+2}}{\sqrt{5 x+3}}-\frac{2}{5} \sqrt{2} E\left (\sin ^{-1}\left (\sqrt{\frac{2}{11}} \sqrt{5 x+3}\right )|-\frac{33}{2}\right ) \]

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[1 - 2*x]/(Sqrt[2 + 3*x]*(3 + 5*x)^(3/2)),x]

[Out]

(-2*Sqrt[1 - 2*x]*Sqrt[2 + 3*x])/Sqrt[3 + 5*x] - (2*Sqrt[2]*EllipticE[ArcSin[Sqrt[2/11]*Sqrt[3 + 5*x]], -33/2]
)/5

________________________________________________________________________________________

Maple [C]  time = 0.017, size = 92, normalized size = 1.5 \begin{align*}{\frac{2}{150\,{x}^{3}+115\,{x}^{2}-35\,x-30}\sqrt{1-2\,x}\sqrt{2+3\,x}\sqrt{3+5\,x} \left ( \sqrt{2}\sqrt{3+5\,x}\sqrt{2+3\,x}\sqrt{1-2\,x}{\it EllipticE} \left ({\frac{1}{11}\sqrt{66+110\,x}},{\frac{i}{2}}\sqrt{66} \right ) -30\,{x}^{2}-5\,x+10 \right ) } \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((1-2*x)^(1/2)/(3+5*x)^(3/2)/(2+3*x)^(1/2),x)

[Out]

2/5*(1-2*x)^(1/2)*(3+5*x)^(1/2)*(2+3*x)^(1/2)*(2^(1/2)*(3+5*x)^(1/2)*(2+3*x)^(1/2)*(1-2*x)^(1/2)*EllipticE(1/1
1*(66+110*x)^(1/2),1/2*I*66^(1/2))-30*x^2-5*x+10)/(30*x^3+23*x^2-7*x-6)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{-2 \, x + 1}}{{\left (5 \, x + 3\right )}^{\frac{3}{2}} \sqrt{3 \, x + 2}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((1-2*x)^(1/2)/(3+5*x)^(3/2)/(2+3*x)^(1/2),x, algorithm="maxima")

[Out]

integrate(sqrt(-2*x + 1)/((5*x + 3)^(3/2)*sqrt(3*x + 2)), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{\sqrt{5 \, x + 3} \sqrt{3 \, x + 2} \sqrt{-2 \, x + 1}}{75 \, x^{3} + 140 \, x^{2} + 87 \, x + 18}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((1-2*x)^(1/2)/(3+5*x)^(3/2)/(2+3*x)^(1/2),x, algorithm="fricas")

[Out]

integral(sqrt(5*x + 3)*sqrt(3*x + 2)*sqrt(-2*x + 1)/(75*x^3 + 140*x^2 + 87*x + 18), x)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((1-2*x)**(1/2)/(3+5*x)**(3/2)/(2+3*x)**(1/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{-2 \, x + 1}}{{\left (5 \, x + 3\right )}^{\frac{3}{2}} \sqrt{3 \, x + 2}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((1-2*x)^(1/2)/(3+5*x)^(3/2)/(2+3*x)^(1/2),x, algorithm="giac")

[Out]

integrate(sqrt(-2*x + 1)/((5*x + 3)^(3/2)*sqrt(3*x + 2)), x)